Boce Lin

boclin@ethz.ch • +41 076 576 42 66 • ETHZ H76, Gloriastrasse 76, 8044 Zurich, Swizterland			and
EDUCATION	I: Southern Methodist University		Dallas, TX
	Bobby B. Lyle School of Engineering		
	Bachelor of Science in Electrical Engineering		
	Dedman College of Humanities & Science	Grad Date:	May 2019
	Bachelor of Science in Mathematics	(GPA: 3.95
	Georgia Institution of Technology		Atlanta GA
	College of Electrical and Computer Engineering	Grad Date:	Dec 2020
	Master's degree in Electrical and Computer Engineering	GPA: 4.00	
	Swiss Federal Institute of Technology in Zürich	Zürich, Swizterland	
	Ph.D. Candidate in Electrical and Electronic Engineering	Grad Date:	Dec 2025
RELEVANT COURSES:	Wireless IC Design, Interface IC design, Systems and Signals, Electromagnetic Fields Waves, Filter Design, Principle of Computer Science, Microelectronic Technology, Microelectronic		
<u>SKILLS:</u>	COMSOL, Cadence Virtuoso, Python, C++, Java, Assembly, MATLAB, ADS, Ansys HFSS		
BILINGUAL:	Fluent in English (Speaking and writing) and Chinese.		
EXTRACRIC	ULAR		
ACTIVITIES:	Yunji Technologies, Internship, Qingdao, China	06/01/2019-08	/10/2019
	 Assisted and Designed CAN communication Module 		
	 Researched and Programed an Embedded System 		
PROJECT:	Dual-Polarization Receiver with Autonomous Polarization Misalignment Correction		
	 A 26-32GHz receiver front-end with autonomous polarization alignment 		
	• Utilizing an IF analog/mixed-signal computation unit to achieve fast alignment		

- Worked on design verification and measurements including modulation testing
- B. Lin, A. Ahmed, and H. Wang, "A 26-32 GHz Dual-Polarization Receiver Frontend with Rapid-Response Mixed-Signal Polarization Alignment for Ultra-Reliable Low Latency Communications," IEEE Solid-State Circuits Lett., vol. 4, pp. 222-225, 2021.

2D 2x2 Receiver Front-end Array with Autonomous Beamform and Spatial Filtering Technique

- A 23-37GHz MIMO receiver front-end with rapid Full-FOV Spatial filtering for unknown strong blocker signal for future mobile and dynamic mmWave applications
- Utilizing phase domain negative feedback loops to fast and rapidly detect, extract, and filter out strong blocker signals without losing Full-FOV or MIMO capability.
- Worked on implementing and measuring the 2D receiver array including system functionality simulation and verification, design tape-out and testing.
- B. Lin, T. Huang, and H. Wang, "A 23-37GHz Autonomous Two-Dimensional MIMO Receiver Array with Rapid Full-FoV Spatial Filtering for Unknown Interference Suppression," Proc. IEEE Custom Integrated Circuits Conference (CICC), Apr. 2022.

Cryogenic CMOS circuits and Systems for Quantum Computing Applications

- A 4.2-9.2GHz LNA with transformer feedback architecture achieve broadband simultaneous noise and power matching for quantum computation applications
- Achieve 0.065dB NF at 16K and 1.41dB NF at 300K with 77.97% relative bandwidth
- B. Lin, R. Al Hadi, H. Mani, P. Marsh, H. Wang, "A 4.2-9.2GHz Cryogenic Transformer Feedback Low Noise Amplifier with 4.5K Noise Temperature and Noise-Power Matching in 22nm CMOS FDSOI," Proc. IEEE Radio Frequency Integrated Circuits (RFIC), Jun. 2022.